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ON THE APPLICATION OF TRANSONIC SIMILARITY RULES
TO WINGS OF FINITE SPAN!

By Jorn R..SPrRBITRR

SUMMARY

The transonic aerodynamic characteristics of wings of finite
span are discussed from the point of view of a unified small
disturbance theory for subsonic, transonic, and supersonic
Jlows about thin wings. Critical examination 18 made of the
merits of the various statemenis of the equations for transonic
flow that have been proposed in the recent literature. It is
Jound that one of the less widely used of these possesses con-

siderable advantages, not only from the point of view of @ priors

theoretical considerations but also of actual comparison of
theoretical and experimental results. The similarity rules and
known solutions of transonicflow theory are reviewed, and
the asymptotic behavior of the lift, drag, and pitching-moment
characteristics of wings of large and small aspect ratio is
discussed. It is shown that certain methods of data preseniation
are superior for the effective display of these characteristics.

INTRODUCTION

The small perturbation potential theory of transonic flow
proposed apparently independently by Oswatitsch and
Wieghardt, Busemann and Guderley, von Kérmén (refs. 1
through 6), and others is now supplying & fund of information
regarding transonic flow about aerodynamic shapes. Solu-
tions have been given for two-dimensional flow around
airfoils at both subsonic and supersonic speeds in papers
by Guderley and Yoshihara, Vincenti and Wagoner, Cole,
Trilling, Oswatitsch, Gullstrand (refs. 7 through 16), and
others. In the application of these results to specific ex-
amples, two items of theoretical interest have been noted
(see, in particular, refs. 8, 17, and 18): (a) The theoretical
results appear to be applicable at Mach numbers far removed
from 1 even though, in most cases, the results have been
obtained from equations valid only in the immediate neigh-
borhood of sonic speed. (b) In the application of theoretical
results to specific examples at Mach numbers other than 1,
it has been noted that certain ambiguities exist in the
theoretical determination of aerodynamic quantities. It is
one of the purposes of this report to investigate these two
points. This is accomplished by examining transonic flow
from the point of view of equations that are valid throughout
the Mach number range rather than only in the neighborhood
of sonic speed. Such an approach emphasizes the relation
between the roles of linear theory and of nonlinear theory
in the transonic range. '

The similarity rules provided by the theory (refs. 5, 6, '

and 19 through 22) have also proved to be useful in the cor-

relation and interpretation of experimental data. It is
with the latter aspect of the transonic-flow problem that
the present paper is primarily concerned. In this paper,
the similarity rules and their application to the specific
problem of concise presentation of lift, drag, and pitching-
moment characteristics of wings are given in detail. The
known solutions of two-dimensional transonic flow are re-
viewed and the asymptotic behavioi of the aerodynamic
characteristics of wings of large and small aspect ratios is
examined. It is shown that certain methods of data
presentation are advantageous for displaying these charac-
teristics. :

SYMBOLS

A aspect ratio '
4 [Uk(t/e)] =4
a speed of sound
a, speed of sound in the free stream
a* critical speed of sound
b wing semispan
Cor drag coefficient
~ U, k)3
COp ((t/c % o
Cb, drag coefficient of symmetrical nonlifting wings
67' ( Uo]c)llii

D, ZIRYE e

@™ >

AC, contribution to drag coefficient due to lift

(ACo/e®)  [Uk(t/e)]* (ACH]a?)

Cy lift coefficient

(Cila) (Uk[e)'R (Cple)

Cn pitching-moment coefficient i

(Cnle) [Uok¢[]'R (Cafe)

c, pressure coefficient -

~ (T k)

< oy >

Cs,, critical pressure coeflicient

C P _center-of-pressure function

c wing chord

Ca, section drag coefficient of symmetrical nonlifting
' " airfoils

~ (Tok)\2

Ace contribution to section drag coefficient due to Lift

(Acald)

[ (Acalod)

! Bupersedes NACA TN 2724 entltled “On the Application of Transonio Similarity Rules,” by John R. 8prelter, 1952, ~

1055



L)

IST"RRRER™H

<

2

'91.“

Tt

—

REPORT 1153—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

section lift coefficient

[Uk 'R (eifa)

drag function :

drag function for symmetrical nonlifting wings

drag due to lift function :

section drag function for symmetrical nonlifting
airfoils

section drag due to lift function

coefficient of nonlinear term of differential
equation for ¢. (See eqs. (7), (18), (19), (20),
(23), and (35).)

lift function

section lift function

pitching-moment function

section pitching-moment function

local Mach number )

free-stream Mach number

pressure function | .

stretching factors defined in equation (BS8)

maximum thickness of wing

free-stream velocity

velocity components parallel and perpendicular,
Srﬁs%ictively, to the flow direction -ahead of a

0

Cartesian coordinates where x extends in the
direction of the free-stream velocity
distance from wing leading edge to center of

pressure

ordinates of wing profiles in fractions of chord -

angle of attack

a
(te) ‘
ratio of specific heats, for airy=1.4
arbitrary constant

AM*—1)
[Ook(t/e)}??

(Moa_ 1)
(Uok (/)PP
ordinate-amplitude parameter
velocity potentinl
perturbation velocity potential

SUBSCRIPTS

values given by linear theory

conditions at the wing surface

conditions immediately upstream from shock
conditions immediately downstream from shock

FUNDAMENTAL CONCEPTS

BASIC EQUATIONS

The quasi-linear partial differential equation éaﬁsﬁed by
the velocity potential ® of steady isentropic flow of a perfect
inviscid gas can be expressed in the form (ref. 23, p. 25)

(@®—%7) R (@*—2,) Py + (@®—3,") ®,,— 28,9, —
28,3,8,,—20,5,9,,=0 )

where the subseript notation is used to indicate differentia-
tion and.a is the local speed of sound given by the relation

D =Tl @A a4 U (@)

In this latter equation U, and a, are, respectively, the ve-
locity and speed of sound in the free stream and v is the ratio
of specific heats (for air y=1.4).

Introducing the perturbation velocity potential ¢, where

o=—Uzx+® 3)

it is possible to express equation (1) in terms of the deriva-
tives of ¢ as follows: ' ‘

(1 - oz)ﬂo.tt'l' Son"l" Prz=

22l kDUt L2 024 L5 2o 0 [+
2al (= DUt L5 o+ 0D+ 1E 2 02 [+
':%; L('Y—'l)Uasoz+7;1 (¢,’+¢,’)+7"2_'1 o [+

4 Y
2%¢7(Uo+¢z)+
2%;%(Ua+¢,)+

LZ%:;‘PU‘P: -

If 1t is assumed that all perturbation velocities and perturba-
tion velocity gradients (represented by first and second
derivatives, respectively, of ¢) are small and that only the
first-order terms in small quantities need be retained, equa-
tion (4) simplifies to the well-known Prandtl-Glauert equa-

tion of linear theory
(1_ o’) et ‘Pn+¢u=0 (5)

where the free-stream velocity is directed along the positive
z axig as shown in figure 1 and where A4, is the Mach number
of the free stream. It is well known that equation (5) leads

z

Figore 1.—View of wing and coordinate system.
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to useful results in the study of subsonic and supersonic
flows about thin wings and slender bodies but that it is
incapable, in general, ot treating transonic flows. The
failure of linear theory in the transonic range 1s evidenced
by the calculated value of ¢, growing to such magnitude
that it can no longer be regarded as a small quantity when
compared with U,.

Second-order theory for thin wings would involve solution
of the equation

(1 _M02)¢=+ ¢yy+ Prs=—
M2 [yal ¢z¢n+7501 el owt ‘Pu)'l‘%o(ﬂou‘hv'l‘ so.son)] (6)

Actually, we are interested in retaining higher-order terms -

only to the extent that is necessary to allow the study of
transonic flow. Examination of the known characteristics
of transonic flow fields indicates that the first term on the
right can often become of importance and should be retained.
The remainder of the terms on the right can never become
large for transonic flows about thin wings at small angles of
attack and can be safely disregarded. The simplified equa-
tion is

(1_ 07)¢u+¢n+¢u—M ; ?zﬂﬂu—k‘{’zﬂan (7)

It follows from the basic assumptions of small-disturbance
transonic theory that equation (7) is valid everywhere in the
flow field, both fore and aft of any shock waves, but cannot
provide any information on the discontinuities in ¢ that
represent the shock waves. This information must be ob-
tained through consideration of the classical equations for

the velocities on either side of an obhque shock. Thus-

it - T, represents the velocity immediately in front of the
shock wave and Us and V; represent the velocity components
parallel and perpendicular, respectively, to U; that occur
immediately behind the shock, the equation for the shock
polar (ref. 23, p. 108) provides that

ﬁl ﬁz’— a,”
ﬁl ﬁa‘l'(l*’ (8)

=(l71—f72)2 3
— T2

y+1 7"
where a* represents the velocity of sound at a point where
the local Mach number is unity and is commonly designated
the critical speed of sound. It is related to the free-stream
velocity and speed of sound by the following equation de-
rived from equation (2):

v+1
2

(1«":(1/02-]-7_2-—1 <U02 (9)

Except for the 1mportant case of the bow wave in supersonic
flow, U, is not, in general, alined with the direction of the z
axis, but is inclined a small angle. With the resolution into
components parallel to the axes of the coordinate system and
the retention of only the leading terms, in a manner similar
to that used in the derivation of equation (7), equation (8)
provides the following relations between the velocity com-
ponents (potential gradients) immediately fore and aft of
the shock: -
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[Ul2—a*?+ Uo(so:l+so:3)]
(a-var2 O2)
(10)

(?’vl - ‘PU;)Z'IT (5’:1'—' (":2)2: (99:1 1'2)2

+1

- This result can be put into a more desirable form by making

use of the following relation derived directly from equation
(9): '

2 M—1
v+ TME

Substitution of this expression into equation (10) and rear-
rangement of the terms yields the desired result

(1 =Mo" (or,— 02)* (0, — 05,)" (02— )=

U2—a*=——- [fo’ @11

This equation corresponds to the shock-polar curve for
weak shock waves inclined at any angle between that of
normal shock waves and that of the Mach lines.

In addition to satisfying equations (7) and (12), the per-
turbation potential must provide flows compatible with the
following physical requirements: (2) The flow must be uni-
form far ahead of the wind, and (b) the flow must be tan-
gential to the wing surface. Therefore, the following boun-
dary conditions are to be specified for the perturbation
potential: .

ab r=—
(‘P:)o= (‘Pv)o= (99:)0: 0 (13)
at the wing surfice W -
(2] bZ
(T&s)v=2= 14

where 0Z/0z refers to the local slope in the z direction of the
wing surface. A systematic application of the perturbation
analysis indicates that the boundary conditions specified on
the wing surface should be simplified by approximating the
fraction on the left by ¢,/U, Furthermore, it is consistent
with the assumption of small disturbances to satisfy this
boundary condition on the two sides of the 2y plane rather
than on the wing surface. Equation (14) is therefore re-

placed by
( >z-=o a(:1"/0) f( (15)
where the shape of the wing profile is given by
- Zfe=1f(x[c,y/b) (16)

where f(z/e, y//b) represents the ordinate-distribution function
and 7 is an ordinate-amplitude parameter. Note that, in
general, a variation of 7 represents a simultaneous change of
the thickness ratio, camber, and angle of attack. In the
gpecial case of a nonlifting wing having symmetrical sections,
T i3 proportional to the thickness ratio; for lifting flat-plate
wings of vanishing thickness, = is proportional to the angle
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of attack. In order to obtain unique and physically im-
portant solutions, it is necessary to assume the Kutta condi-
tion (that the flow leaves all subsonic trailing edges smoothly).

Upon solving the above boundary-value problem for the
potential, one may determine the pressure coefficient by
means of the formula

d,,=—% o 17

It should be noted that the results obtained by using the
foregoing approximate equations might be expected to tend
toward those of linear theory as the free-stream Mach number
M, departs far from unity. This follows from the fact that
the product ¢.¢- becomes small relative to the linear terms
under this condition. Solutions of the equations for tran~
sonic flow found to date have all possessed this property.

COMPARISON WITH OTHER STATEMENTS OF THE TRANSONIC-FLOW
EQUATIONS

\

As a result of minor variations in the perturbation analy-
sis, recent papers have used at least four different relations
for k, the coeflicient of the nonlinear term in the simplified
equation for the perturbation velocity potential. As indi-
cated in the preceding paragraphs, straightforward develop-
ment of the theory leads to the relation

_areytl
k=M, . . (18)

This is sometimes simplified (e. g., refs. 22 and 24) to

v+1

k= T, 19
by arguing that M, can be set equal to unity in this term
without much loss in accuracy, since the right-hand side of
equation (7) is merely an approximation to allow the treat-
ment of transonic flows and rapidly diminishes in magnitude
as M, departs from upnity. In some treatments (e. g., refs.
16 and 21), equation (1) is divided by @?, and the quotient
1/a® in each term is expanded in a binominal series.  When
this is done, the coefficient & of the term involving ¢.p.. is

b 2O DI (20)

Still another expression for k is used by Oswatitsch in
references 13 and 14. Two derivations are given, one based
on mass-flow considerations (ref. 14) and the other (ref. 13)
-based on simplifying equation (1), under the assumption
of nearly parallel flow, to

(A—MD) ezt pp+0u=0 1)

and expending the variable coefficient 1—M? in the series
—M—1— 21D 00

1—Mr=1—MA— o 20 (22)

where M is the local Mach number and a* is the critical
speed of sound as defined in equation (9). Comparison of
equations (21) and (22) with equation (7) shows the coeffi-
cient % in this approximation is

- and (12).
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_afa
’C=11i{]°— (23)

a —U,
It should be noted that the four alternative relations for % are
identical for M,=1 and all but that given by equation (19)
are zero for M,=0.

A similar situation arises in. the derivation of the simplified
equation for the shock polar. Here again the precise form
of the expression for the coefficient k of equation (12) depends
on the details of the perturbation analysis. The most
important point from a practical point of view is that the
same expression for k is used in both the equation for the
potential and that for the shock polar, namely equations (7)
While this point has not always been explicitly
stated, it is actually a necessary condition for the existence
of the transonic similarity rules.

Although each of the above alternative forms of the
perturbation equations has been used at least once in the
recent theoretical investigations of transonic flow, the most
widely used set of equations are those derived under the
more restrictive assumption that all velocities are small
perturbations around the critical speed of sound a* rather
than around the free-stream velocity U,. In the latter
scheme, the perturbation potential is defined by (see, e. g.,
ref. 6 or 20)

o' =—a*s+® (24)
and the resulting differential equation for ¢’ is
1
Go’ﬂ'l" qo,"___’)’:; Sa,z‘Pln' (25)

| The approximate relation for the shock polar’is

, 1(¢'s+¢
(¢'ylf—¢'y1)’+(so’,l—¢.,)’—'Y:; ( TR 2 ) (¢ sy—'x,)* (26)
The corresponding boundary conditions are specified as
follows:

atr =— o

(“D,‘)":U"_a‘* = —‘—Y—('z"i_'—l (1 —M"z)’ (‘P,y)o= (‘P’z)o= 0

at the wing surface

’ * 0 Ty
(@’ Drmo=a Tmf(? 3) 27

where the shape of the wing profile is still given by equation
(16). The equation for the pressure coefficient is approxi-
mated similarly, thus,

Oy~ — 2k loe— (o)) (28)

This statement of the equations for transonic flow is clearly
identical to those given previously, herein, when the free-
stream Mach number is unity. Although the derivation of
the a* equations requires that the free-stream Mach number
be very close to unity, these equations have been used with
good success by & number of authors to calculate the aero-

dynamic forces on airfoils at Mach numbers considerably
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removed from unity. In so doing, it has been suggested that
it might be preferable to use more accurate relations for the
pressure coefficient or the boundary conditions; for instance,
it has been suggested that a* be replaced with U, in the
equation for J,/. This matter has been discussed at length
in references 8, 17, and 18. Since no restriction requiring
the Mach number to be near unity is made in the U, analysis,
it is informative to examine the relation between the results
of the a* and the U, analyses. —This is done in Appendix A.
It is found that the a* analysis, if performed in & completely
consistent manner using equations (24) through (28), yields
values for C, that are identical to those given by the more
general U, analysis using k= (y+1)/U,. This somewhsat
paradoxical result is achieved through the action of a number
of compensating effects and only applies to the pressures and’
the forces and moments derivable therefrom. It should be
noted, in particular, that the values of the local velocities
and Mach numbers provided by the a* analysis for flows
having free-stream Mach numbers other than unity are in
orror. 'Throughout the remainder of this report, the discus-
sion will be based on the U, analysis.

A significant case where the alternative relations for £ lead
to different results is the prediction of the critical pressure
coefficient 0,,, defined as the value of the pressure coefficient
0, at a point where the local Mach number is unity. It is
important that a ressonably good approximation be main-
tained for the variation of C,,, with M, because shock waves
make their first appearance, and the airfoil first experiences
o pressure drag when C, becomes more negative than C;
somewhere on the airfoil surface. In the present approxima-
tion, C,, corresponds to that value of U,, and, hence, or
#z, ot which equation (7) changes locally from elliptic to
hyperbqlic type. This condition is recognized by the vanish-
ing of the coeflicient of ¢., thus

1 _Moa_k(ias) =0

or, in view of equation (17)

+

Cr,= —% (%)cr_—-"kil—]o (1—M,3) (29)

The exact relation for isentropic flow is (e. g., ref. 25, p. 28)

vd

2 2 ¥y—1 , 2\ )
204 [(m+—7+1 ) ‘1] (30)
The variation of C;_ with M, has been computed by use of’
the exact relation and each of the four approximate relations.
The results are presented graphically in figure 2. It may be
seen that a reasonably good approximation for C, , is ob-
tained over a wide Mach number range when £ is taken as-
given in either equation (18) or (23), and that a somewhat-
greater error is incurred when equation (20) is used. On the

other hand, equation (19) leads to & very poor approximation
for C

Pep
Similar comparisons can be made for local Mach numbers
M other than unity by noting that the coefficient 1 —M 22—k,

Op“=
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Figure 2.—Variation of critical pressure coefficient with Mach number.
of ¢ In equation (7) corresponds, in the present approxima-
tion, to 1—A43 thus

kU,
3

1—-Mi=1—MA—ke,=1—Mj2+ Gy (31)

The corresponding exact relation for isentropic flow is
1 +1—2-—1 M} =

© 2

Co=rpps| —1+ (32)

1+l;—1M’

The results so obtained are generally similar to those in-
dicated in figure 2, although the relative accuracy of the bet-
ter approximations changes somewhat with the situation.
All the approximations are exact, of course, when C,=0; on
the other hand, none of the approximations are exact, except
for isolated cases, when (), is different from zero, even though
all the approximations agree among themselves when the
free-stream Mach numberis unity. In order to provide some
information regarding the errors that are likely to be in-
curred when O, is not very small, figure 3 has been prepared
illustrating the variation of local Mach number with pressure
coefficient for a free-stream Mach number of unity.

A second case where the exact and approximate relations
may be compared is furnished by considering the velocity
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F16ure 3.—Variation of local Mach number with pressure coefficient
for M ,=1.
jump through & shock wave. If the flow ahead of the shock

wave is uniform and parallel to the z axis, the results may be
conveniently represented by the shock-polar diagram in
which Vifa* is plotted as a function of Usfa*. The exact
relation is furnished by equation (8). The corresponding
approximate relations are determined from equation (12) by
settjng @z, Py 5, 80d ¢, equal to zero, whereby U,=U,,
M,=M,, and

k
pri=| =Mt | 02 (39)
Once the variation of ¢z, With ¢ is determined for a givén
M,, the corresponding variation of Vi with U. may be
readily determined since, for this case,
L—Ti= Uo+¢$‘2’

Vi=e, (34)

The variation of azf- with %i for M,=1.2 has been computed

using both the exact and approximate relations, and the
results are presented graphically in conventional shock-
polar form in figure 4. This figure contains, in addition to
curves for the four expressions for & discussed previously, a
curve computed using

1 )
k=M YT (35)
U,
W fa*

2 I 2 2 b2
ME(y +1) /U1 v——Exact Mo [2+0-0M7) fty
S, \ N / ,

(7 N /
a7 SN / =My +),
a~Up \ (] ]

\‘\“_.—31--\\--- / /
oy +Vo -y
/
4
{l
7 8 1.2

My<l.2

Ficure +.—Exact and approximate shock polars.
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This expression for % arises in a series expansion of the right-
hand member of equation (10). (For sake of completeness,
the corresponding variation of 0, with M, is also included
in figure 2.) Just as with the comparison of the critical
pressure coefficient, the expressions for & given by equations
(19) and (385) lead to poor approximations, whereas any other
of the expressions lead to reasonably good approximations.
A notable point is that the expression for k given by equation
(18), that is k=M 2(v+1)/U,, leads to the exact relation for
velocity jump through a normal shock wave.

In order to facilitate comparison with previous results and
to achieve an economy of notation, the present analysis is
carried as far as possible without specifying a particular rela-
tion for k. That is, the equations of the analysis and reduced

" parameters with which the results are expressed are written

containing * which may be equated to any of the five stated
relations, or in fact, to .any coefficient that does not depend
on z,y,z or . The actual values of the pressure coefficient
and Mach number for an airfoil of specific thickness ratio,
however, depend on which relation is selected for k. Whoro-
ever such values are given, they will be those obtained by use -
of the expression for % given in equation (18), that is,

YT Sl
=21 (18)

The principal reason for this choice is that it appears to
provide a set of equations, or & mathematical model, which
approximates certain essential features of transonic flow with

" superior accuracy.

RELATION BETWEEN TRANSONIC THEORY AND LINEAR THEORY

It is important to recognize that wing theory based on
equation (7) is valid for all Mach numbers below the hyper-
sonic range. At subsonic and supersonic speeds, equation (7)
is of the same order of accuracy as the Prandtl-Glauert
equation of liner theory (eq. (5)) although more difficult to
solve. At _M,=1, equation (7) is identical with equation
(25), now widely used in the study of transonic-flow problems.

On the other hand, there is no a priori method for de-
termining whether or not a solution of the equations of
linear theory will be valid in the transonic range. One can
only decide by solving the problem under the assumptions of

| linear theory and then inspecting the magnitudes of the

terms, particularly of ¢, to see whether or not they can be
regarded as small quantities. If the terms are sufficiently
small, the linear-theory solution is presumed valid oven
though the Mach number may be near unity. Linearizod-
theory solutions have been obtained for a great number of
practical wing problems and their behavior in the transonic
range is now well known. To review briefly: For unswept
wings of infinite span, linear theory indicates that the
magnitude of ¢ on the surface of a given airfoil is propor-
tional to 1/+/[T—247; consequently, ¢, approaches infinity
as M, approaches unity and the theory is clearly inapplicable.
For wings of finite span, however, the perturbation velocities
may be large or small at sonic velocity, depending on the
particular problem as diseussed in detail in referenco 26.
Specifically, for three-dimensional lifting surfaces of zero
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thickness, the velocities remain finite everywhere except at
the leading edges, their magnitudes generally increasing with
increasing aspect ratio and angle of attack. For wings of
nonzero thickness, however, ¢. generally becomes large
logarithmically as 1—3M,> approaches zero;. consequently,
linear theory is inapplicable within some Mach number
range surrounding unity.

Summarizing, linear theory is apphc&ble to lifting surfaces
of small or moderate aspect ratio at all transonic speeds,
but fails for wings of finite thickness within a range of
Mach numbers surrounding unity. The range of inapplica-
bility diminishes to zero as the aspect ratio, thickness ratio,
and angle of attack of the wing tend to zero.

In treating transonic flows for which linear theory is
applicable, it is often advantageous to consider the special
case of sonic flow (M,=1) separately. Equation (5) for
the perturbation potential then reduces to a particularly
simple form .

¢yv+‘l’u=0

Solutions of this equation, in conjunction with the boundary
conditions given by equations (13) and (15), are identical to
those of linear theory found by solving equation (5) and
subsequently setting M,=1, but can be obtained with much
less effort. Since, in addition, the results of this simple
theory, now generally known as slender-wing theory, are
also applicable to low-aspect-ratio lifting surfaces throughout
the entire Mach number range, a considerable number of
solutions of slender-wing theory have been presented in the
last few years (e. g., réfs. 27, 28, and 29). These results
are, of course, applicable to flows at M,=1 to exactly the
same oxtent as the results of linear theory.

SIMILARITY RULES

In reference 6, von Kérmdn derived similarity rules for
the pressure distribution, lift, drag, and pitching moment of
airfoils in transonic flow using equations (24) through (28).
The same equations were used in reference 20 to determine
the transonic similarity rules for wings of finite span. The
corresponding similarity rules of linearized subsonic and
supersonic wing theory were also derived and compared
with the tronsonic similarity rules in the latter reference.
Tt was shown that the similarity rules of linear theory con-
tain an arbitrary parameter and can be expressed in many
forms, one of which coincides with the similarity rules of
transonic flow.

A derivation of the transonic similarity rules, based on
the U, equations with unspecified %, is provided in Appendix
B. This derivation possesses the advantage of being based
on 2 single statement of the problem of wing theory that
is uniformly valid at subsonmic, transonic, and supersonic
speeds. It follows from the preceding discussion that the
results so found are identical to those of references 6 and
20 if k is equated to (y+1)/U,. The similarity rules for

0,, Cr, O, and Cp are given in Appendix B as follows:
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Co= = ok)m? Em;wl_ﬁf 4; —, b:l (36)
G k=t )"3"/___‘4] N
Ca (Uk)‘”‘MI:(Uk ),,3, 1/__M_A:] (38)
i e I

where the geometry of related wings is given by equation (16):
- (Z[e)=1f(ale, y/b)

Equations (36) through (39) are functional equations. For
example, equation (36) is to be interpreted as stating that
the pressure coefficient O, is equal to 723/(Uk)'? times some
function P of & number of specified parameters. The
foregoing equations have been written for flows where A/, <1.
If M,>1, the radical ¥y1—M,? should be replaced with
vM:—1. The functions P, ., M, and D are different,
however, for subsonic and supersonic flow. Consequently,
subsonic flows may be related to other subsonic flows by
the similarity rules, but not to supersonic flows, and con-
versely.

ALTERNATIVE FORMS OF THE SIMILARITY RULES

It is important to recognize that the similarity parameters
may be combined or regrouped in any manner whatsoever,
provided the same number of independent parameters is
always retained. For instance, in much of what follows, it
will be found desirable to use the square of v/1—M 2/(U Jk7)1R
and to replace Y1—M2A with a new parameter (U kr)!R4-
obtained by dividing v1—44,24 by v1—M2/(Ujkr)'A. In
terms of these parameters, the similarity rules are

R ?[(Ujkj)m: CASVNTEA] )
=g £ e (A 4] @
On= gy M| (e Tk 4] a2

G~ ® | WA 4] @

wherein the geometry of related wings is again given by
equation (16).

The simila:rity rules thus formulated are totally equivalent
to those given by equations (36) through (39) but possess
three outstanding advantages:

(&) The indeterminacy at M,=1 resulting from two

| parameters simultaneously vanishing is removed.
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(b) The squaring of the first parameter avoids the neces-
sity of changing parameters as sonic speed is passed.

(c) The use of the parameter (Ujkr)'® A rather than
JI=M2 A aids in distinguishing the regimes in which linear
theory is applicable in the transonic range from those in
which nonlinear theory must be used. Thus as (U kr)'7?
A approaches zero, linear theory is always applicable, pro-
vided, in some cases, that 1, is not precisely equal to unity.
On the other hand, as (UJjJ7)'® A becomes large, linear
theory is not applicable in the transonic range and nonlinear
theory must be used.

The forms of the similarity rules given in equations (36)
through (43) have been the source of some confusion, due
to the multiple role that = plays in determining the thmkness
ratio, camber, and angle of attack. As can be seen from
equation (16), all three of these geometrical quantities are
linearly proportional to 7. A more explicit statement of the
symmetrical profiles of nonzero thickness may be obtained
by rewriting the expression for Z/c in terms of the thickness
ration ¢/c and angle of attack « rather than , thus,

Zle=tfe [g GY-75]

Comparison of equations (16) and (44) indicates that t/c
plays a similar role to 7 but that it is necessary to introduce
a second parameter a/(f/¢). In this way, a new set of equa-
tions expressing the similarity rules is obtained which
correspond to equations (40) through (43), although expressed

(44)

in terms of « and #/c rather than ~. They are
0,={G8Ls 0=, A% afe,y1b) (45)
A (@U/;’?,a =Lt 4,3) (46)
0= o=, 33 @)
Op= (g;’)‘,),a Co=D(t, 4,5) (48)

where &, A and & are similarity parameters defined as
follows:

_ M2—1
N (A1

SLOPE OF PRESSURE CURVE AT Mo=1 -

~ a

A=[(Uk) ¢/ A4, a=i (49)

Liepmann and Bryson (refs. 17 and 18) have made the
following observations which enable the determination by
simple and intuitive considerations of the slope of the C,
versus /M, curve at M,=1. It is a well-known fact that, at
slightly supersonic Mach numbers, the detached bow wave
is far away from the airfoil and nearly normal. It is also
well known that the Mach number downstream of weak
normel shock is as much below unity as the Mach number
upstream is above unity. Consequently, the Mach number
distribution on the airfoil should be independent of Mach
number in the neighborhood of M,=1, thatis,
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(50)

(3 ms™

Now,‘if the isentropic flow relation for C, in terms of M and
M, .

9 1+ M,, =
0p=m —1+ _AT—MT (61)

is differentiated with respect to M, M, is equated to unity,
and -equation (50) is introduced, the following relation, first
given in reference 8 by Vincenti and Wagoner, is found:

() sy =417 Ot (52)

Since the above-mentioned derivation is based to a certain
extent on physical reasoning and makes use of the exact
rather than approximate relation between pressure and Mach
number, it is of interest from the present point of veiw to
review the equivalent result contained in the model of tran-

" sonic flow provided by equations (7), (12), (13), (15), and

(17). In common with the other characteristics of transonic
theory, the result can be expressed conveniently in the form
of a similarity rule. Thus, recall the approximate relation
for the local Mach number given by equation (31).
1—M3=

1—M, 2+ (31)

Now, acco\rding to the similarity rules, transonic theory
does not provide information about C, or M, alone, but only

about parameters such as 6’: and ¢,. Thus, the similarity
rule for local. Mach number is the following:

C M1 Mi—1 (U

1
ORI (URHEIT 28

[
Op=fa—‘§ Op (53)

-The solutions of the equations for transonic flow obtained

for slightly supersonic flow by Vincenti and Wagoner in
reference 8 and for slightly subsonic flow by Cole in reference
11 indicate that the approximate relation which corresponds
to the Mach number freeze is the following:

<d£>eo-o | (64)

It mey be recognized that this relation is equivalent to the
exact relation given in equation (50) if & is independent of
M,, as in equation (19). This is not the case, however,
when the presently preferred relation for %, namely, equation
(18), is used. Given equation (54), differentiation of equa-
tion (53) shows that the slope of the pressure curve in the
reduced parameters is
dC’
>Eo=° 2 (56)

dé,

It is a simple matter to derive the corresponding slope for
the C, versus M, curve at M,=1, provided a specific expres-
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sion is selected for k. If k is equated to M2 (v+1)/U,, the
final result is

(dM My=1 'y—l-l 3( P)Mml (56)

It is interesting to note that if & is independent of AM,, the
slope of the pressure curve is

_ A
z= )

o=l

Thus, although equation (19) leads to the exact relation for
the rate of change of the local Mach number, the slope of
the pressure curve is considerably less accurate than that
provided by equation (18).

The range of problems té which the foregoing results
apply is not known at present. Inasmuch as the entire
phenomenon appears to be connected with. the presence of a
detached bow wave which stands normal to the flow, intuitive
considerations suggest that the results are probably appli-
cable at least to symmetrical airfoils at zero or infinitesimal
angles of attack but perhaps not to airfoils at larger angles
of attack or to wings of finite span.

APPLICATIONS
FUNDAMENTAL HYPOTHESES AND PRINCIPLES

The remainder of this report is principally concerned with
the deduction of the qualitative, and to some extent quantita-
tive, characteristics of thin wings in transonic flow by.means
of simple logical considerations based primarily on the simi-
larity rules together with the following hypoth%es

(2) Nonlinear theory based on equation (7) is applicable
to all problems.

(b) Linear theory based on equation (5) is valid for all wings
at Mach numbers either appreciably below or above unity.

(c) Linear theory is valid at all Mach numbers, except
possibly very near unity, for wings of small aspect ratio.

(d) The differential pressures between the upper and lower
surfaces of a wing having symmetrical airfoil sections are
proportional to the angle of attack for at least & small range
of angles about zero.

(e) Theslope of 0,, versus £, at M,=1, defined by equation
(55), is applicable at least to symmetrical airfoil sections at
zero or infinitesimal angles of attack.

The consequences of the foregoing statements will be con-
sistently pursued in the following sections in the discussion

of the aerodynamic characteristics of airfoils and complete -

wings. Throughout, the analysis will be restricted to wings
having symmetrical profiles. Whenever specific results are
to be used to illustrate the statements, they will nearly always
be for symmetrical-wedge or double-wedge profiles and for
wings of triangular plan form. This choiceis dictated by the
availability of theoretical results.

The basic principle in the following analysis is to express the
similarity rules in such forms that the lift, pitching-moment,
and drag coefficients can be studied for limiting values of the
parameters with no chance for ambiguity due to indetermi-
nate forms. In this respect, the statement of the similarity

1063

rules provided by equations (45) through (49) will be found
particularly useful.

PRESSURE DRAG OF SYMMETRICAL NONLIFTING Wl'N:Gs
The similarity rule for the pressure drag coefficient of sym-
metrical nonlifting wings having profiles given by
(Zfe=(t[c) g(=z/e, y/b) (58)

is obtained from equations (44) and (48) by setting «, the
angle of attack, to zero

BT G nh o
where
fFﬁ%m’ A=[T.k ¢fe) 4 (49)

“‘Therefore, drag results for symmetrical nonlifting wings

should be presented by plotting the variation of the general-

‘ized drag coefficient Cj, with £ and 4.

At Mach numbers sufficiently removed from unity for lin-
ear theory to apply, Cp, must be independent of % since %
does not appear in either the differential equation or bound-
ary conditions of linear theory. This implies that the param-
eters £, and 4 must be arranged in such a manner that % is
canceled completely from the above relation for Cp,. The
only alternative inside the function D, is to form the product
% A. Numerous possibilities exist on the outside of D,
depending on whether % is canceled by using £,, 4, or some
combination thereof. Although any of these are acceptable,

the first will be preferred. In this way the following results
are obtained:

(Cb,): e

Goy § |M—1] e [ MA—1]

TH" {[(Uolc) @ m} 7’"[{[@@ TP } X
1 (t/c) z__

(OB Go 4 |=- U D, (JTFT1)

where it should berecalled that D,, is a different function for
subsonic and supersonic flow. Equation (60) is equivalent
to the extended Prandtl-Glauert rule. For subsonic flow,

D’Almbert’s paradox requires that the drag be zero; there-
fore, for all wings,

(CDo)l=0’
M.<1

(80)

(0D0)1=0 (6 1)
Eo<0

For supersonic flow, wave drag exists which depends on
VM2—1 A as well as on the plan form and airfoil section.
The general functional relation for the drag coefficient of a

family-of affinely related wings at zero angle of attack, as
given by linear theory, is

(te) - ey,
Cp)) =—=t—eD, (VMEF=1A4), (Cp,) =t V*Dy (5?4
(o) =gy P/ MI=TA), (Gp = &7 Do (5" 4)

(62)

Wings of infinite agpect ratio—For wings of infinite span
(or airfoils), equation (62), representing the functional
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relation of linear theory for the drag coefficient, reduces to

the following:

(a)) =

A >1

2
/AE/CT)_X const., (c,, ), const

where the value of the constant depends on the shape of the
airfoil. Numerous experimental data show variations con-
sistent with equation (63) at Mach numbers greater than
about that of shock attachment. At Mach numbers closer
to unity, however, the theoretical values provided by this
equation are unreliable. It is evident from inspection of the
results of linear theory itself that such a failure occurs, since
the perturbation velocities assumed to be small in the deri-
vation of the equations are found to become infinitely large
as the Mach number approaches umity. . It is apparent,
therefore, that it is necessary to resort to nonlinear theory
for the calculatnon of the drag of airfoils in the transonic

speed range.

(63)

A similarity rule for the generalized section drag coefficient- |

of symmetrical nonlifting airfoils which is valid throughout
the Mach number range may be obtained from equamon (59)
by setting A equal to infinity.

P L 2
=G T Ao

At & Mach number of unity, the similarity parameter &,
vanishes and the function J,(%,) is a constant

Ca ) =d,(0)=const., (‘t[:.za)1 (l('f’/ 2;1,3 X const.

Od =

(qDo) .=®0(£0: ©)=d,(£) . (64)
A=

(65)

indicating that the section drag coefficients of affinely related
airfoils are proportional to the five-thirds power of their
thickness ratios. If hypothesis (e) is accepted, the variation

of c,,o with ¢, at M,=1 is found to be zero for completed

airfoils
dca d(Z[t) d(Z[t)
dzo>e,-o 95 a5, e.,-o[d(x/c)]d o) e

If & is taken to be M (v-+1)/U,, (dC,/dM,)xs,=1 is given by
equation (56) and the slope of the drag curve is

dZ=0 (66)

dcdo

712 )scm=S G s ()
-~ 3(0”)“ -z e()=

The corresponding exact relation can be determined simi-
larly by use of equatlon (62) for the slope of the pressure

curve. Itis
az ,/z
zzzd@

deg,
(68)

2
g(cdo) M, =1

(67)

Tf) A1 9§[v+1 e ChI

—m ‘(cdo) A =1
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Since calculations have been made of the drag in transonic
flow of simple symmetrical sections at zero angle of attack,
it is not necessary to speculate further regarding the vari-

ation of ;., with £, At present, complete theoretical infor-

Jmation exists for the drag of symmetrical double-wedge

airfoils throughout the transonic range. Solutions for this
section have been obtained by transforming the nonlinear
differential equation of the small disturbance transonic
theory into hodograph variables and taking advantage of
simplification of the normally difficult problems relating to

_ the boundary conditions by restricting attention to polyg-

onal profiles. The results for flows having subsonie, sonic,
and supersonic free-stream velocities have been given,
respectively, by Trilling (ref. 12), Guderley and Yoshiharn
(ref. 7), and Vincenti and Wagoner (ref. 8). The linear-
theory solution for pure supersonic flows has been given by
Ackeret (ref. 30). All of these results are combined on a
single graph in figure 5. It may be seen that the preceding

61—
Liepmann and Bryson—-\‘ --—yvGuderlay and Yoshihara
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-
Double-wedge airfoil
~—— Nonlinear theory
~—=Linear theory

Transonic "j—° Supersonic

-3 -2 - o
£, 1 2 3

Fieure 5.—Theoretical drag of double-wedge airfoil.

. -

|. remarks concerning the relation of the results of linear

theory and nonlinear theory, and the slope of the drag curve
at & Mach number of unity are illustrated by this comparison.

Osawatitsch has given approximate solutions for A£,<1
for the pressure distribution on symmetrical biconvex
airfoils (refs. 13 and 14) and for the pressure distribution

‘and drag on NACA four-digit symmetrical airfoils (ref. 14).

This work has recently been extended to several NACA
6-series airfoils by Gullstrand (refs. 15 and 18). Their
drag results are generally similar to those indicated for the

-double-wedge section in figure 5.

In problems such as we are considering herein, the final
test is provided by comparison with experimental results.

" Unfortunately, experimental results for the transonic speed

range are scarce, as well as difficult to obtain, and no data’
are available. for direct comparison with the theorotical
results summarized in figure 5. At present, however, com-
plete information, both theoretical and experimental, does
exist for a single-wedge section followed by a straight section
extending far downstream. In accord with some of the
original papers on this subject, the single-wedge section is
considered as the front half of a symmetrical double-wedge
airfoil having a chord ¢. Solutions for this section obtained
using transonic flow theory have been. given for flows having
subsonic, sonic, and supersonic free-stream velocities, re-
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spectively, by Cole (ref. 11), Guderley and Yoshihara (réf. 7,
and Vincenti and Wagoner (ref. 8). These results are shown
in figure 6 together with the corresponding experimental

(y+n1/3
- ¢
(1/c)57%
| 4
—~—
Single -wedge N

section

e
wedge semiangle / ﬁ# &%gé .
o 35 2% A
TS T

i

-2 i 0 1 2 3
M,2-1 :
[(y+|)(l/c ]2/3

Fiaure 6.—Drag correlation of single-wedge section, k= (y+1)/U.,.

results of Liepmann and Bryson (refs. 17 and 18). Both
the theoretical curve and the experimental points are plotted
in the same manner as presented in the original papers. As
remarked in a preceding section, the theoretical results are
based on a set of equations equivalent to the present equa-
tions with % equated to (y+1)/U,. The small vertical lines
on the experimental data points represent the uncertainty
of the values. The slope of the drag curve at A,=1 is no
longer zero as indicated for the complete airfoil by equation
(66) but takes on a positive value given originally by Liep-
mann and Bryson (ref. 17) and readily derivable from
equation (66). )
deg,

d_Eo—) Eo"’— 2

This figure indicates that the theoretical and experimental
results are only in general qualitative agreement. Since it

(69)

is shown in a preceding section that theoretical considera- -

tions suggest that a superior theory results if % is equated
to M2(v+1)/U, rather than (v+1)/U,, it is of interest to
recalculate and replot the present results accordingly so as
to ascertain to what degree these thoughts are borne out by
actual experiment. The results are shown in figure 7. It
can be seen that the theoretical and experimental results
are in nearly perfect agreement. Comparison of figures 6
and 7 provides striking evidence supporting the contention
that % should be equated to M, y+1)/U, rather than
(v+1)/U,, as has been done so often in the past.

Wings of finite aspect ratio.—The similarity rules for wings
of finite aspect ratio are given by equations (59) and (60).
Although no essential simplification of the rules occurs for
wings of small aspect ratio, the range of applicability of
linear theory increases as the aspect ratio decreases. This
point can be illustrated by considering the results provided
by linear theory in a specific case. A good example to
gelect for this purpose is that of the drag in supersonic flow
of a triangular wing with symmetrical double-wedge airfoils.
(See ref. 31.) This particular choice was made for the follow-

3210605—85——67
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Fieure 7.—Drag correlation of single-wedge section, k=M 3 (y+41)/U,.

ing reasons: (&) Solutions are known for all supersonic Mach
numbers; (b) the double-wedge airfoil discussed in the pre-
ceding sections corresponds to the limiting case of the wing
of very great aspect ratio. The drag results provided for
this wing by linear theory are presented in figure 8.

6
s
S
" I
4
o
A
S
—_— |y
e
NQ
NN
i <
\\
“-Puckett
(Linear theory)
(o] I 2 3
ME-1 A=NE, A

Figore 8.—Supersonic drag of triangular wing, linear theory.

The results of figure 8 are presented in a different manner

in figure 9 wherein Z’;: is plotted as a function of %, for
various values of 4 as suggested by equation (59). For
purposes of comparison, the curves for the drag of airfoils
(A= ) computed by both linear and.nonlinear theory are
also included in the graph. As noted in the preceding
section on airfoils, comparison of the results of linear theory
with those of nonlinear theory for wings of 4= » shows
that good agreement exists for laxger £, but that at smaller
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Ficure 9.—Variation with £, of reduced drag coefficient of triangular

wing.

&, the values predicted by linear theory become too large.
For wings of finite 4, only the results of linear theory are
available. They also exhibit the trend of indicating infinite
drag as &, approaches zero; however, the range of £ in

which the value of C’D is etcesswe is much less than is the

case for A=w. In general, OD of wings of small aspect
ratio diminishes with decreasing aspect ratio.
The drag results of figure 8 are presented in still another

form in figure 10 in which is plotted the variation of C’D
- with 4 for various values of £. The principal merit of
this method of plotting is that it aids in distinguishing the
region where nonlinear theory must be used from that where
linear theory may be useful. Thus, the twoe-dimensional
nonlinear theory results appear on the nght of the graph
corresponding to large A; whereas the three-dimensional
linear theory results appear on the left for small A. The
filling in of the remainder of the graph requires either the
solution of the equations of three-dimensional nonlinear
wing theory or the use of experimental data. It should
again be noted that the present drag considerations apply
only to the pressure drag. Before plotting experimental

results in the manner indicated, it is mnecessary to first.

subtract the friction drag.
i LIFT
The similarity rule for the lift coefficient Cy of a family
of wings having ordinates Z given by equation (44)

Zie—tfe | atele, y/t) 72 % 49
is given in equation (46) as
ST 0 e £, (46)

o™

REPORT 1153—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

6 —
/7__
//
= 0l—F—<" '—,_
£, .

]

r—,7 - ,’
4 7 r] f—'r—

7 / J/
L e
2 L LT '
/ A
P
/ //4
N
// Nonlinear theory
r—& <0 — —— Linear theory
— | -1
o 1 , 2 A ®
A
FIGURE 10.—Variation with 4 of reduced drag coefficient of triangular
wings.
where
ME—1

—— = 13 ==

go [Uak(t/c)]z/a Z [Uok(t/c)] A) & t/ (49)
If hypothesis (d) is accepted, Gy varies linearly with « for
at least small angles of attack. It is advantageous, therefore,
to consider the lift ratio Cp/a rather than Cp alone, thereby
minimizing the mﬂuence of &

%! o o ,
a (0 £ & =gy £ o

A, & (70)
where .C ’(&, 4, &) is anew function of the indicated variables
obtained from . (¢, A, & by division by & Therefore,
lift results may be presented by plotting the variation with

- N
£, A, and & of a generalized lift ratio Cp/o defined as follows

(the prime on . has been omitted for simplicity): .

N ‘
Crfa=[Uk )" (Col)=L s &, &) (71)

Equation (71) shows that 5[/2 depends upon three
parameters, one more than the number which can readily be
treated on a simple plot. Simplification can be gained,
of course, by holding one of the parameters constant for an
entire graph. Results so presented are particularly interest-
ing for £=0, (Mo=1); A= ®, (A= m); and @=0, (e=0).
The latter scheme is especially good since experiments
indicate that lift curves of wings are often relatively straight

N
Iines at all Mach numbers. The values of Cifa at &=0
might, therefore, be expected to be good indications of the
actual values for other & The appropriate similarity rule

- may then be written

(Calo)=L (o, &, 0)=Lolter A) (72)

a=0
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TFor cases where linear theory applies (hypotheses (b) and
(e)), two statements can be made immediately which
provide further information about Cpfa: (a) (Ci/a); must
be independent of %, and (b) (Cy/a); must be independent of
& by virtue of the syperposition principle of linear theory.
Therefore, following the procedure used in equation (60)
gives

WiEld)

(73)

£, WEF=TIA4), (0,,)

(%ﬁm%ﬂ w—

where again (; is a different function for subsonic and super-
sonic flow.

Wings of infinite aspect ratio.—For wings of infinite aspect -

ratio, the functional relation of linear theory for the lift ratio
given by equation (73) reduces to
__const.

(c, _const. (g_;
=l /i el
Solutions of the equations of linear theory show that the
value of the constant is 27 for subsonic flow and four for
supersonic flow. Examination of these results indicates that
they are valid at Mach numbers appreciably less than or
greater than unity, but are invalid for Mach numbers near 1.
A similarity rule for the section lift coefficients of a family
of affinely related symmetrical airfoils which is valid through-
out the Mach number range may be obteined from equation
(71) by setting A=,

D=Ly, D)= (s, 13)

At & Mach number of unity, £, is identically zero and the
expression for the lift ratio becomes

1 o
(°‘!€.')1_[Uok(t/c)]m {C i/‘c) (76)

Equation (76), when considered together with hypothesis (d),
indicates that at sonic speed, the lift-curve slope at zero
angle of attack of airfoils of a single family varies inversely
as the cube root of the thickness ratio, thus,

(74)

(75)

~——
(c;/a) = 1(0 )&’))
Eo=0

__const.
LUk (t/c)]?

Note that as the thickness ratio goes to zero, the value of the
lift-curve slope at zero angle of attack becomes infinite, just
o8 is indicated by equation (74) to be the case according to
linear theory. If, on the other hand, ¢/¢ diminishes to zero
while « is fixed so that & becomes very large, it is plausible
that the thickness ratio does not have any effect on c, We
thus have the following:

.1 ~
(Cz/a)::ﬁ;1=m 1(0, 2—0)=

«@ a d?la N
;m.nl"[—mﬁ I(O: t75 - OD)_WXCODS':" (78)

In this case, ¢; is proportional to the two-thirds power of .

If hypothesm (e) is acceptable, the variation of c,/a with £,
at M,=1 is zero, since .

77
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If k is taken to be M2(y+1)/U,, (dCp/dM,)st,=1 is given by
equation (56) and the variation of ¢;/a with M, at M,=1 is

[?d‘dﬂz ('g)a_ﬂ]m-fsﬁ d(opla) a—~0d<> 9S[a(7+1)
COMIEGEEONE

The corresponding exact relation can be determined simils.rly
when equation (52) is used for the slope of the pressure curve.

It is
[z @)l (), @

At present, calculations have been made of the lift in sonie
flow (Guderley and Yoshihara, ref. 32) and in slightly super-
sonic flow (Vincenti and Wagoner, ref. 10) of symmetrical
double-wedge airfoils inclined an infinitesimal angle of attack.
The corresponding solutions for airfoils in slightly subsonic
flow have not yet been found. The results of the above-
mentioned investigations are shown in figure 11 together with

l 4 T FAckeret
Prandtl - Glauert-J 7 - \ herere
// r 9] \/’

K3 \
L 4 S\

l A7 RN
Double~wedge airfoil Vs /’ —
Guderley and Yoshihara-—7"~ Nonlinear theory, d=o
Vincenti_and Waqoner———~ —— Linegr theory |

=3 -2 -l (o} | 2 3
£

g
Freure 11.—Theoretical lift-curve slope of double~wedge airfoils.

the corresponding values given by linear theory. As in the
drag case discussed in the preceding section, it may be seen
that the remarks concerning the relation between the results
of linear theory and nonlinear theory and the slope of the

curve of ;,7; versus §, at £,=0 are verified for this particular
airfoil.

Wings of vanishing aspect ratio.—Two well-known results
of linear theory are that the lift-curve slopes of wings of
finite aspect ratio remain finite throughout the entire Mach
number range and that the lift-curve slopes of wings of

vanishing aspect ratio are independent of Mach number,
. N

Therefore, equation (73) implies that (Cy/«); must be pro-

portional to 4 either for wings of vanishing 4 in any flow,

or for any wing in a flow of vanishing £,:

(\gz.’_.{'?!)z= (OL/a)z—A X const. (82)

Mo=)

(Gnfeyr=A X const., (C/e)s=
£yl A-0

The value of the constant must be determined for each plan
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form by actually solving the equations of linear theory.
For wings having trailing edges which possess no cutouts
extending forward of the most forward station of maximum
span, that is, triangular, rectangular, elliptical, etc., as well
as certain sweptback wings, the value of the constant is
2. (Refs. 26 through 29 should be consulted for further
discussion. of this point as well as for the values of the con-
stant for wings having cutouts in the trailing edge which
violate the above-stated condition.)

It is seen from equation (82) that the lift-curve slopes of
wings in sonic flow decrease continuously in magnitude as
the aspect ratio diminishes toward zero. Since, in addition,
the lift-curve slope given by linear theory has its maximum
value at M,=1, it is conjectured that the lift results of linear
theory are a good approximation to those of nonlinear
theory not only for all wings at Mach numbers far from unity
but also for all Mach numbers for wings of sufficiently small
aspect ratio.

Wings of finite aspect ratio.—At the present tlme no solu-
tions of the nonlinear theory are available for wings of finite
aspect ratio. However, from the remarks of the preceding
pamgmphs it is apparent that a curve representing the varia-

tion of C’L/a with 4 for constant .E., and & would have the

following asymptotlc properties: OL/a would increase ]mea.rly
with A for small 4 and be independent of 4 for large A.
In order to give o better idea of the numerical values to. be
expected, a set of typical results of this type is shown in
figure 12 for wings having triangular plan forms and sym-

6 —f —
- eo = I——\\
~
—————
4 I S
\"—fo =]
c, §,0—— / \\ 4
?L_ 4 S 7/ yd &, - 0=
K
/ // b é.1.7 ==l
i/ f
2 /// r B
V4
/ Nonlinear theory, @ =0
—~ = Linear theory
1 1 {C
o 2 4 0 ©
y)
Freure 12.—Variation with 4 of reduced lift~curve slope of triangular
‘ wings.

metrical double-wedge airfoil sections. The supersonic
results are those of Stewart, Brown (refs. 33 and 34), and
others. The subsonic results are those calculated by De
Young and Harper (ref. 35) using Weissinger’s modified
lifting-line theory.
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An interesting result of the foregoing remarks coucerns the
influence of thickness ratio on the lift~curve slope at zero
angle of attack of wings in sonic flow. For wings of largoe
aspect ratio, the lift-curve slope is inversely proportional to
the cube root of the thickness ratio. . For wings of small
aspect ratio, the lift-curve slope is independent of the thick-
ness ratio.

PITCHING MOMENT

The remarks of the pitching-moment characteristics of
wings follow in a manner exactly analogous to those just
stated for the lift characteristics. The corresponding state-
ments for the pitching-moment coefficient C, may be obtained
by simply replacing Cp, with Cp and . with M. Thus, the
similarity rules for Cr corresponding to equations (71) and
(73) are the following, respectively:

N
(Cnf)=[U.k(t[e)]" (Crmfa)= Mo, 4, &)
On) = L __ s, (JAZF=T]
(‘;)l-— r‘———Mog—ll -Ml( IMo 1 A))

G

(83)

(&) 4 (84)

where once more M and M, are different functions for sub-

sonic and supersonic flow. The only difference between the
discussion of Cy and C, is that the values of the constants of
equations (74), (77), (78), and (82) are, of course, different.
Graphs of theoretical pitching-moment characteristics for
airfoils and for triangular wings corresponding to the lift
results of figures 11 and 12 are shown in figures 13 and 14.

I //7 2 ~ T
Prandtl-Giguert——~_J/ L S cheret
1 ~ RN
s Cm -~
e T ]
I - 1/
== - > l
Double-wedge dirfoil Ry -
Guderley and Yoshihara—~ 7 Nonlinear theory, a» 0
Vincenti and Wagoner |[——— ~—=—Linear theory |
| 1
-3 -2 ! 0 | 2
£, ®

Fieure 13.—Theoretical pitching-moment curve slope of double-wedge
airfoils.

The moment axis is taken to be through the most forward
point of the wing.

Sometimes it is desired to present pitching-moment char-
acteristics of wings in terms of center-of-pressure position
rather than pitching-moment coefficient. Since the center-
of-presspre position can be expressed in terms of O, and &, by

zc.p.____gg_
c Oz, (85)

the resulting expression for the center-of-pressure position

found through application of equations (71) and (83) is

xc.p. ‘M(EOJ A ﬁ’) C

2 A,
¢ i, Am A

(86)
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— ]
2 { —
50'0“\\ —
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3 ~ ) g
/i,
| j/ - {f
/
74

Nonlinear theory, @ = 0

~—————— Linear theory
1 A <
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A
Froure 14.—Variation with 4 of reduced pitching-moment curve slope
of triangular wings.

The corresponding relation for linear theory is

(%)FC- P, (VMF=1]A)=C. P&l A) (87)

PRESSURE DRAG DUE TO LIFT

The similarity rule for the pressure drag of inclined wings -

having symmetrical airfoils is indicated by equation (48) to
be the following:

Uk ~
o= Co=D(t 4,8 (88)
The portion of the drag due to lift is therefore
ACy=Co—Ca, ((t/"))l, [D(t, A, — Dt 4, 0)]
t -
(ilﬁ))—l,-m(so, 4,5 (89)

Since the differential pressures between upper and lower sur-
faces of wings having symmetrical airfoil sections are pro-
portional to « for at least a small range of a surrounding zero
(bypothesis (d)), it follows that ACy is proportional to the
square of a. It is advantageous, therefore, to consider the
drag-rise ratio ACp/c? rather than AC), alone, thus,

ACp 1 (tfe)*? 1
ol a’(U L)xT(DA(fa: A &)= WTA (&, A )

(90)

where “D,’ is & new function of the indicated variables ob-
tained from D, by dividing by @. Consequently, drag-due-
to-lift data should be presented by plotting the variation with
£, A, and & of a generalized drag-rise ratio ACp/c? defined as
follows (the prime on ‘D, is omitted for simplicity):

ACp/ad=[U,kt/O]"(ACD]c)=Da(tn 4,5  (91)
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The actual presentation of the results of this three-parameter
system may be accomplished as described in the section on
the lift of wings. - Of particular interest is the simplification
resulting from presenting only the values found at «=0.
The simplified similarity rule is then

ECoJay =Dt 4, 0) (92)

For cases where linear theory a.pphes, the following results
hold:

(AC») ‘/]____KDAI ‘/—___1 A,

(A AC»

Wings of infinite aspect ratio.—For wings of infinite aspect
ratio, the functional relation of linear theory for the drag due
to lift, equation (93), reduces to

__const.

( ) const 1 Acd m

Solutions of the equations of linear theory show that the
value of the constant is zero for subsonic flow and four for
supersonic flow about any symmetrical airfoil. These results
are valid at Mach numbers appreciably less than or greater
than unity but are invalid for Mach numbers near 1.

A similarity rule for the drag due to lift of a family of
affinely related symmetrical airfoils that is valid throughout
the Mach number range may be obtained from equation (91)
by setting A=o.

TDA (IE D) (93)

(94)

(59—t =, D=stt® (95)

At a Mach number of unity, equation (95), for the drag due
to lift, reduces to the following:

Acg ’
e _[Uk(t/c)]l,sdA(o,t/ ) (96)

Equation (96), together with hypothesis (d), indicates that,
at sonic speed, the drag-rise ratio Acs/o? of airfoils of a single
family varies inversely as the cube root of the thickness ratio.
For very large values of @, the thickness ratio cannot have
any effect on Acq; therefore, Acy is proportional to the five-
thirds power of the angle of attack. If hypothesis (e) is

N
accepted, the variation of Acs/o® with £, at M,=1 is zero,

4G9, 6 £[4(2).]C)
P& @t o

If % is taken to be M2 (v+1)/U,, (dCy/dM,)ar,-1 isigiven by
equation (56), and the variation of Acg/e? with M, at M,=1is

——
(% =dA(0’ a):

£,=0
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[ero ).Hol, » Sﬁig d(o’"/a) " ()
=9Sclxﬁ[a(v+1> 3(0 )»] GG, o

The corresponding exact relation can be determined similarly
by use of equation (52) for the slope of the pressure curve.

Ttis »
) a»o]n 'Y + 1 ACd a0 | (99)
Af -1

o

[cLM

Wings of vanishing aspect rati6.—Since, as-indicated in
the preceding sections, the lift calculated by means of linear
theory remains finite throughout the Mach number range,
and diminishes to zero as the aspect ratio approaches zero,
it follows that the drag due to lift must behave similarly.
It is consequently reasonable to presume that linear theory is

capable of describing the drag-due-to-lift characteristics of
wings of vanishing aspect -ratio at all Mach numbers.

Therefore, the following relations stemming from equation.

(93) hold:

ACp\ _(AC5\ _
(B, D), ~m.

Eom=0
), -
- e ' ==
A0

(A—C;D-> = AX const.
a )i
Ao=1
Solutions of the equations of linear theory show that the
value of the constant is =/4 for all wings of small {/[A*—1]4

(100)
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whose trailing edges possess no cutouts extending forward of
the most forward station of maximum span (i. e., triangular,
rectangular, elliptical wings, etc.). The quoted value of the
constant corresponds to the development of the full “leading-
edge force.” It is known .that this force is oftentimes not
completely realized, due to & local separation and subsequent
reattachment of the flow around the leading edge. If the
leading-edge force is nonexistent, the corresponding value
for the constant is /2.

Wings of finite aspect ratio —At the present time no drag-
due-to-lift results have been obtained from the nonlinear
theory for wings of either finite or infinite aspect ratio.
The foregoing remarks, however, are sufficient to determine

. N .
that a curve representing the variation of AUp/o? with ﬁ

“for constant £ and & would incresse linearly with A for

small A (unless the degree of attainment of the leading-edge
force also depends on ﬂ) and become independent of A for
large A. The resulting curve would presumably have the

same general appearance as that shown in figure 12 for E’:/;‘

It may sometimes be desired to present drag-due-to-lift
results in terms of AC,/C? or ACp/aCly, rather than AC,/c?.
The similarity rules for these quantities can be qulckly de-
duced from the foregoing results.

AxareEs ABRONAUTICAL LLABORATORY
NatioNalL Apvisory COMMITTEE FOR AERONAUTICS
. Morrerr Fierp, Cavrr., Dec. 16, 1962



APPENDIX A
RELATION BETWEEN U, AND a* STATEMENTS OF THE TRANSONIC-FLOW EQUATIONS

Equations (3), (7), (12), (13), (15), and (17) were presented
in the text as being applicable to the study of transonic, as
well as supersonie, flow about thin wings. These equations
repeated below as equations (A1) through (A6), will be
referred to as the U, statement of the problem since the
perturbation velocities are taken about the free-stream veloc-
ity U,. The perturbation potential ¢ is defined by

p=—Ux+® (A1)
The differential equation is
(1 _l‘loz) ¢u+¢n+¢zz=k¢z¢n (Az)
The shock relation is
R e O N T
or e
=k (21572) (em—ee) (49
The boundary conditions are
at r=— o .
- (‘Pz) [ (‘Pv) o= (‘Pz) =0 (A-4)
at the wing surface
. Z
(p)emo= Ua <2_$> (A5)
The pressure coefficient is given by
0,,=—— (A6)

U, Pz

In the usual ¢* statement of the transonic-flow equations
(egs. (24) through (28) in the text), it is assumed that all
velocities are only slightly different from the critical speed

of sound a*. The perturbation potential is defined by
¢ =—a*c+ (A7)
The differential equation is
1 .
?'wte "__'_Y_j'_ @ 50 2 (AS)

a*

The shock relation is

(@' —¢"s)* (0 ey— za)"_:%-‘l (ﬁ;—_ﬁ (¢’ —¢'s)* (A9)

If the perturbation analysis is carried out in a completely
consistent manner, the boundary conditions are:
aft r=— o

. (99'2)0': (115[ o 1) ;L%’ (‘P’r)o= (¢')o=0 (A10)

at the wing surface
’ ) —_k b A. 1
(‘P th=0=0a a—m ( 1 )
and the pressure coefficient is given by
2
Cp:"'? [99 z_(‘P Z-:)o] (AIZ)

The relation hetween the U, and a* statements can be
determined directly in the following manner. The differ-
ential equations and shock relations for ¢’ and ¢ will be the
same if

v+10¢"

a* dz 85"(1_M°2)
or if
;g a* a* (1— Ma’)
o' =k yF1° v+1 (A13)

The boundary conditions for ¢’ corresponding to those
stated for ¢ in equations (A4) and (A5) are:

at r=— o
g at a* (1—Mp2) - o* =M
(ﬁa:)o—]L Y1 ~(‘Pz)_a | ~F1
- g (419
(@'o=k 7 (=0, (¢"Do=F 57 (p:)o=0
at the wing surface
ke _rp, 9 (%2 5
(()9 l)l-o—k 7_{_1 (qu)t-D—kUO 7+1 (bx (Ala)
Finally, the pressure coefficient is given by
, 2 21: kU,,
O _'—"'T:[ (‘P z)o] +1 Pr— +1 0 (A]-G)

Comparison of the above equations with those given
previously for the completely consistent a* analysis reveals
their identity if, and only if, % is taken as (y+1)/U,, that is,

’_ v+1
C/=0C, if k= T,

(A17)

As far as obfaining the values of 0, is concerned, therefore,
the conventional a* statement of the problem may be
regarded as a transformation of the more general U, state-
ment with  being defined as in equation (A17) or (19). As
is evident from equation (A13), however, the local velocities
found in the a* analysis are only correct when the free-
stream Mach number is unity.
1071
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The foregoing discussion has demonstrated that the con-
ventional a¢* statement of transonic-flow problems yields
the same values for C, as the U, statement, provided % in
the latter set of equations is equated to (v+1)/U,. It is
indicated in the text, however, that transonic results ob-
tained by use of other expressions for £ (and, in particular,
k=M2(+1)/U,) are superior in meny important aspects
to those obtained using k= (y+1)/U,. It is consequently
not without interest to determine a generalized form of the
a* equations which correspond to the U, equations with
unspecified 2. The resulting equations for the perturbation
potential and the shock relation are:

(A18)
(A19)

o'=—a*z+®d
e ) L
7 ’
(¢',l—¢',2)2+(¢',1—go' o) =k f#) (?’21—50'22)2 (A20)

The boundary conditions are:
at g=— o

(¢I:)o=ﬂ%.r_l" (ﬁplv)o= (99,:)0= 0 (A-?'l)
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at the wing surface

(‘;0':):-0= a* (%)

(A22)
and the pressure coefficient is given by
’ 2 ’

01: =—¢_1._; [‘P =_(‘P :)o] (A23)

It can be readily verified that these equations will produce
the same values for the pressure coefficient as equations (A1)
through (A6), provided % and %’ are related as follows:

¥ U,
L (A24)

Thus, if it is desired to obtain values for O, by use of equa-
tions (A18) through (A23) that are the same as those given
by equations (A1) through (A6) with k=Mj2(v+1)/U,, &’
should be equated to the following: *

k/=ﬂf{o2 g'Y+ 1)

= (A25)



APPENDIX B
DERIVATION OF SIMILARITY RULES

The basic equations of linear theory and of nonlinear theory
of transonic flow may be summarized as follows. The
differential equations are:

(B1)

k b¢ Z) GD , Nonlinear (B2)

b o 0 Linear

(1-MH 28 +5—“;

The approximate shock relation used in the treatment of
transonic flow is

(1—=M7) (s~ ¢5) "+ (00— 202)*+ (25,— 05 )°

=k(ﬁ¥?) (on—ts):  (B3)

The boundary conditions are:

afr=—ow
a .
- @)GAE. @9
at the wing surface
Ly _, 2 (zy
T, bz),-o_T ek <c’ b) (B5)
where the geometry of the wing is given by
(Z[e)=1f(x/e, y/b) (B6)
The pressure coefficient is given by
20
P _‘ﬁ; % (B7)

If the differential equations are now transformed into a
system with primed quantities and the proportionality or
stretching factors are denoted by s with appropriate sub-
seripts such that

Ua/=8t;Uo

w'=s7, Y=3%y, 2'=82, =30,
(B8)
A= =8y T—M2, UJk'=8.U,k or k'=:—‘k
U
the potential equations (egs. (B1) and (B2)) become
8:2 (1 2)[ 8_,2390' 252/
55%8 e Z)a:'” 8, 0Y"? ' 8, 02”?
0 Linear B9)

808, , bgo o? go .
S k S5 52 Nonlinear (B10)

and the shock relation becomes

321005—535

68

8,* ‘
g —Mof>'(¢',,l—¢'f,>2+$ (evr—t've)
99,:'1+‘P,:'2)
2

Nonlinear (B11)

8U8;
3
88

(qo sy @y = (0", —¢'e)?

1| The flow in the primed system is similar to that in the

original system if ¢ satisfies the same differential equations
and boundary conditions as ¢. Consequently, for similarity
to exist, it is necessary first of all that the potential equations
and the shock equations for the two flows be the same.
Therefore, the following relations between the stretching

factors must be satisfied: ) o
W_1 Gy B {W Linear. (B12)
887 (58, Nonlinear B13)

8 &
where, for linear theory, A/\’ is an arbitrary constant which
can be equated to 8?/s, if desired. The constant is written

‘as o fraction in order to maintain a certain symrmetry

throughout the analysis.

An immediate consequence of this transformation is that
the wing plan forms undergo an affine transformation such
that the aspect ratios of wings in similar flow fields are
related, according to both linear and nonlinear theory, by

,_8 '_'M02
A —s: A—- A=y A (B14)
or by
JAI—M2 A'=+1—M2 A (B15)

Since ¢’ is proportional to ¢, the boundary conditions at
z=— o are automatically satisfied. The boundary condi-
tions at the wings may be given in either of two forms:

(32),.~2(3), e v 2y (2Y) @0
gz >z'-o—U° b(a:'/c’)f (o’ b> soU, 7 b(:c'/c)f(c"b
B17)

whence, if the two wings have the same ordinate-distribu-
tion functions, that is, if f'(z’f¢’, ¥'/b")=Ff(x/e, y/b), the
ordinate-amplitude parameters are related as follows:

r— 80 S8
Suss $uls
— 7
V a _?{2"2 Linear B18)

Nonlinear (B19)
1073
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or as
1/(1;71 2 wflszo’ ‘Linear  (B20).
VA=Y 1M} Nonlinear (B21)

T VA

The relation between the pressure coefficients at corre-
sponding points on the wing surface is given by

O =—v2, _> _20) _ S
? U’ "m0 3032 U 02 /sm0 $uSz *
%7 Cy, 7 Linear B22)

892 (T 2/3 Uok 1/3 . .
3—0"<7'> (—U, ) C» Nonlinear (B23)
or more completely by
=% o
VALY, T3y 4 ,,b]

a(r—J—ﬁrA_,b) Linéar

Cy’

(B24)

'—J]f{oz) [ 7
O [(UILI 1)1[3 (1 :) A; / b]

1—M?

s |:
- Uo'k) ( ') Ok )™
VI 45
The foregoing relationships may be summarized in ‘the
following statement: The similarity rule for the pressure
coefficients on a family of wings having their geometry given

by
(Z[c)=1f(x/c, y/b) (B26)

. Nonlinear (B25)

is

,/ — 2~
Op,=% Py <—1y}4—°—,«/1—Mf 4; fv%) Linear  (B27)

#2303 T2
GP (Uok)lﬁi (P (U k )1/3’ A

The similarity rules for the lift, pitchin.g—moment, and drag
coefficients given by the linear theory are N

— 2 _
0,—,,=% £ (V_l_)‘Tifo_,w/‘—l_M; A) Linear (B29)

Nonﬁnear (B28)

G M, (V—l;—TM—’, JI=3E A)- Linear  (B30)

Coi=Z D, (“_1—;714_2 JI=17 A) Linear (B31)

The corresponding similarity rules given by nonlinear theory
are

(Uok)lla 'y [(U T )1]37 41 A] Von]lne&r (B32)
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Cn= (U.,]c)”a M [(U,Ic )m’ V1— A] Nonlinear (B33) ~

Cp= (Uok)‘” [(Ulc )1,3:1,/ A] Nonlinear (B34)

It should be noted that the foregoing equations have been
written for subsonic flow where M,<1. If M,>1, the
radical /1—M.,? should be replaced with /37 —1.

In the linear-theory analysis, A has remained a completely
arbitrary coefficient to be selected as best suits the particular
problem at hand. For instance, the compressible-flow rela-
tionships between two wings having identical pressure dis-
tributions are found by setting A=1. If, on the other hand,
\ is set equal to 4/1—M 3, the thickness ratio, camber, and
angle of attack of related wings are identical. The greatest
simplification of the similarity rules of linear theory occurs

when ) is set equal to Y1—A,2/r since the number of param-
eters necessary to show the results of linear theory is thereby
decreased by ome. This degree of arbitrariness in the
similarity rules for linear theory is in contrast to the case for
nonlinear transonic theory in which no undetermined co-
efficient like A is to be found.

For the present purpose of gaining a better understanding
of transonic flows, the most advantageous choice for X\ is

k 1/3
r=B) (B35)

because then the similarity rules for linear theory assume
forms identical to those for nonlinear transonic theory. This
is important since it implies that solutions of linear theory
and of nonlinear transonic theory can be expressed' as func-
tions of the same parameters and, hence, can both be plotted
on & single graph in terms of one set of parameters. The two
theories would, of course, yield two distinct curves on such a
plot. The curve for linear theory would be accepted as valid
for purely subsonic and purely supersonic flows but may or
may not be valid in the transonic range, as discussed pre-
viously. The curve for nonlinear transonic theory is valid
not only for transonic flows, but for subsonic and supersonic
small perturbation flows as well. As is evident from the
derivation of the basic equations, however, the results of the
nonlinear-transonic theory should be considered to be of only
equal accuracy to those of linear theory in the definitely
subsonic and supersonic regimes, despite the fact that the

solutions are much more difficult to obtain.
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